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Abstract. A new formalism for the calculation of elastic multiple-scattering processes of 
electrons is presented, which takes the spherical character of the electron waves fully into 
account. It is based on a magnetic quantum number expansion of the electron Green’s 
function and makes extensive use of recurrence relations. In the present paper this method 
is applied to the escaping electron in the final state of  Auger electron spectroscopy (AES). 
Formulaeforan analyticintegrationoftheelectronintensityover the aperture ofthedetector 
are derived and inserted into this calculation scheme. Within this framework angle-resolved 
M,,VV Auger electron intensities from a clean Ni( l l1)  surface are calculated for the first 
time and compared with experimental data. 

1. Introduction 

From photoelectron spectroscopy it is well known that a lot of valuable information on 
the electronic and geometrical structure in the surface region can be obtained through 
angle-resolved investigations. Angle-resolved Auger electron spectroscopy (AES), how- 
ever, has attracted considerably less interest although AES is a widely used technique in 
surface physics. The intrinsic drawback of AES that is responsible for this situation is 
certainly the complicated excitation process, which involves two electrons. Nevertheless 
it is clear that the essential origins of the angle-dependent structures observed in the 
spectra of monocrystalline samples are elastic scattering processes of the excited elec- 
trons at atoms surrounding the escaping path of the electrons from the emitter to the 
surface. Therefore the question arises of whether Auger electron diffraction can be used 
for investigations of surface geometry. For this purpose the measured spectra must be 
compared with theoretical intensity distributions of all possible structure models for the 
surface region. 

Several methods for calculating elastic scattering effects in excited electron states 
are known from similar spectroscopies, such as EXAFS, xANES and photoelectron dif- 
fraction. In the early days of angle-resolved AES it was mainly the dynamical LEED theory, 
which makes use of the two-dimensional periodicity of the sample [ 1-61, that was applied 
in multiple-scattering calculations. Now, cluster calculations are preferred because 

(i) they are better adapted to the local nature of the excitation and scattering 
processes and 

(ii) they allow easy variation of the atomic positions, even in complicated systems. 
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Multiple-scattering cluster calculations within the framework of a full partial wave 
expansion are rather time-consuming and expensive at energies above 30 eV due to 
the large number of angular momenta which must be included. Therefore several 
approximations are used in calculations of EXAFS, XANES, photoelectron diffraction and 
Auger electron diffraction. It is generally acknowledged that the accuracy of a simple 
plane-wave approximation (PWA) is sufficient only for backscattering processes (single- 
scattering contributions in EXAFS) and to a lesser extent also for the scattering of spherical 
waves with low angular momenta into other directions (first scattering process of the 
excited electrons in photoelectron diffraction or Auger electron diffraction) [7-101. 
The PWA fails significantly for all multiple-scattering pathways which contain forward- 
scattering events. Therefore in the last decade several attempts have been made to 
develop improved calculation procedures or approximation schemes for spherical-wave 
scattering which are numerically much faster than the ordinary partial wave expansion 
and which allow a reliable accuracy for all multiple-scattering processes [9,11-151. 

In the present paper we describe a new version of a magnetic quantum number 
expansion for the electron Green's function in the multiple-scattering theory, which 
continues the basic idea of the reduced angular momentum expansion (RAME) [9, 14, 
151 and the Taylor-series magnetic quantum number expansion (TSMQNE) of Barton and 
Shirley [11, 121. We derive efficient recurrence relations for the coefficients which 
describe the expansion of an outgoing spherical electron wave around a new centre in 
an angular momentum representation. These exact expressions allow us to bypass a 
doubtful approximation made in the TSMQNE. In the present paper this magnetic quan- 
tum number expansion is used for a description of the final state of Auger electrons, but 
unreservedly it can be applied also to photoelectron diffraction, x-ray absorption fine 
structures (XANES and EXAFS) or other related spectroscopies. As a further refinement 
the electron intensity is integrated over the aperture of the detector analytically. 

In section 3 angle-resolved M,,VV Auger electron spectra of Ni( l l l ) ,  which were 
calculated within this framework. are presented and compared with experimental data 
[16] for the main azimuths and different energies. 

2. Theory 

2.1. Multiple-scattering description of thefinal state in A E S  

In a first-order perturbation theory the angle-resolved Auger electron intensity is given 
by 

where K is the wavevector of the plane waves describing the electrons far away from the 
sample and k is the corresponding wavevector inside the sample. The relationship 
between K and k is determined by the refraction effect at the surface potential step. The 
vectorR, denotes the diverse emitter positions and M L O  ( E )  contains the matrix elements 
for the Auger transitions from the considered initial state to all possible final states with 
the angular momenta Lo = (f,, mu) in which the escaping electron has the kinetic energy 
E .  In our notation L is always an abbreviation for L = (1, m). 
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The coefficients B L o  ( k ,  R , )  describe the wavefunction of the excited electrons inside 
the sample: 

The first term in (2) represents the direct wave and the following include single-, double- 
and higher-order-scattering contributions: 

A F ; ( ~ ,  R , )  = i-'OYLO(k) (3) 

A I'i ( k ,  R 1 7 R O )  = -'I yL  1 ( k )  ( R  1 )G L ] L o  ( R  1 - R o )  
L I  

A ~ ~ ( ~ , R ~ , R , J , )  = EZi - ' ?YL2(k)TI2 (R2)  
LI L ?  

x G L 2 L , ( R 2  -R1)T/,(R1)GL,Lo(R1 -Ro).  

All terms containing an R i + l  = Ri are excluded from the summations in (2). The TI(Rj) 
are a function of the complex scattering phase shifts 6, of the atom Rj7 which take into 
account thermal vibrations [ 17,181, 

T,(Rj )  = i sin exp(is/). (4) 

G L j L ( R )  = 4 n x  i"-'+'"hr(kR)Yt.(R) dS2Y2tYLYLp, ( 5 )  

The coefficients 

L" 

inwhichh/(x) = hj"(x) are thesphericalHankelfunctions[19],describethefreeelectron 
propagator in an angular momentum representation. Using rotations of the coordinate 
system they may be replaced by coefficients GL,L(Rf)  with vectorsR' lying on the positive 
z axis. We introduce a new symbol for these basic quantities in our formalism by 

GL'L(Rez )  = g / , / n l ( ~ ) a m , , m  (6) 

where e, is the unity vector in the z direction. Now equations (3) become 

A f i ( k ,  R , )  = i-'0t/(210 + 1)/4nD&&(k, e,) 

Afi(k,  R l , R o )  = i-'lt/(211 + 1)/4nD&9i(k,Rlo) 
/ I  41 

x TI I ( R  1 ki 1/04 1 ( R  10 >D b'$" ( R  1" 7 e2 ) 

Af:(k,R2,R1,Ro) = x x x x i i - ' 2 t / ( 2 1 2  + 1)/4n 
12 4 2  I 1  41 

x Dr& ( k ,  R21) TI* (R2)g/*/14* (Rz1 >D!;j, (R  21 9 R 10) 

( R  1 ) g / l / u q  1 ( R  10 > D t $ o  ( R  10 7 (7)  

with Rij = Ri - Rj .  The D$L. are rotation matrices, which are defined in the appendix, 
where appropriate recurrence relations can also be found. 



9738 V Fritzsche 

In expression (7) the numerical effort of computing the wavefunction can be opti- 
mized by making use of the fact that the magnitude of the coefficients grlm(R) decreases 
systematically and considerably with ascending absolute value of the magnetic quantum 
number m. That means the sums over the magnetic quantum numbers q1 in (7) can be 
restricted to a narrow range -M S q, S M without any substantial loss of accuracy. In 
this way a lot of unimportant terms in (7) can be skipped in practical calculations. In the 
energy range up to 1000 eV values of M = 1 . . . 3  are sufficient to limit the errors for 
scattering processes between nearest neighbours, which are the most unfavourable cases 
for such a truncation, to 1% or less. At these energies angular momenta up to I,,, = 
10 . . , 20 must be included in the partial wave expansion. Therefore a truncation of the 
q, sums in (7) reduces the numerical work considerably in comparison with a calculation 
on the basis of equation (3), in which all m, from the interval -I,,, 6 - I ,  S m, =s I ,  S I,,, 
must be taken into account. 

For the first time these properties of the quantities gi,lm(R) have been utilized in the 
reduced angular momentum expansion (RAME) 19,201, where M was chosen to be 1 and 
the gl,im(R) were approximated by simple expressions. 

2.2. Recurrence relations for the gl,Im(R) 

The question of how to calculate the quantities g18/rl(R) is of essential importance for 
minimizing the computational effort. In this section it will be shown that the complete 
set of coefficientsg/,,(R) needed in (7) can be calculated by means of simple recurrence 
relations. 

From equation (5) it follows immediately that 

x 2Jrx 
I" 

+ I  

'(21"+ l )h , (kR)  j dgPT(g)Py(()P/,,(Z) 
- 1  

with 

21 + 1 ( I  - m)!  
N/m = k-m) (9) 

where P;" (Z) are the associated Legendre polynomials. The gIflm(R) obey the symmetry 
relations 

which follow from (8) and 

P;"(x)  = ( - l ) m [ ( l  - m)! / ( l+  m)!]P;"(x).  (11) 

Therefore recurrence relations are needed only for the index range m 2 0 and 1 3  l ' ,  in 
which, of course, the conditions 12 m and 1' 2 m must be fulfilled. 
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ai ,m = V(l2 - m2) / (4 I2  - 1). 

Now, all necessary coefficients g/t/m(R) for a constant magnetic quantum number m 
can be computed by means of (13) and (14) provided that the initial values gmlm(R) are 
known. For m = 0 these quantities can be calculated directly from equation (8) 

go./.o(R) = -hW. (16) 

With the help of 

(17) 

(18) 

d 
dx  

(1 - x*) -P;" (x )  = -IxP;"(x) + ( 1  + m)Pj"_,(x) ,  

x ~ ; ' ( x )  - P T , ( X )  = (I - m + 1)  ViT?~y-'(x) 
and (12 ) ,  one gets for m a 1 

d 
- ( ~ ; ( x ) P ; " ( x ) )  = - ( I+m)(I-m+ 1) (2m-  l ) P ~ ~ \ ( x ) P ; " - ' ( x )  
dx (19)  

and 

(20) 
d 
dx  - ( P / + l ( X )  - PI-, (4) = (21 + l )P / (X) .  

Integration by parts using (19) and (20)  gives (form 3 1)  

This result and the recursion formula for the spherical Hankel functions 

hi-1 ( x )  + h + l ( x )  = (21 + W / ( X ) / X  (22) 
can be used to verify form 2 0 

Now the system of recurrence relations is complete: equation (16) is used to generate 
the initial values for m = 0 and then equation (23) provides the initial values for m > 0. 
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Starting from these results all other coefficients can be computed by means of (14) 
and (13), for which m is constant. The total computational effort for the recursive 
construction of the grlm(R) needed in (7) is proportional to 1iax M .  

The upper limit I,,, of the angular momenta which must be included in the expansion 
(3) or (7) can be estimated from a quasi-classical picture to be roughly 

lmax( Imax  + 1) k2R2,0t (24) 
where Rpot is the radius of the scattering potential. For non-overlapping potentials we 
have R 3 2RPot and obtain for the prefactor in (23) 

2m+3- 3- 3 
- JE kR s i ;  kR 6Ji .  (25 ) 

Therefore the absolute value of gm+l.l.m+l ( R )  is much smaller than the absolute value 
of gm,l,m(R). This property of the initial values propagates through all results of the 
recursion on a constant magnetic quantum number level (13,14) and makes the trunc- 
ation of the q i  sums in (7) possible. Furthermore it can be seen from equation (23) that 
the errors caused by such an approximation decrease considerably with the distance R. 
Therefore a great number of large-distance scattering processes, which occur in cluster 
calculations, can be computed with very low values for the truncation parameter M .  

2.3.  Comparison with the T S M Q N E  

Similar ideas as described above were realized in the Taylor-series magnetic quantum 
number expansion (TSMQNE) of Barton and Shirley [11, 121. In order to compare both 
methods we express the glSlm(R) form 3 0 by quantities introduced in [11]: 

I-m 

gl j lm(R)  = 4x  i"-'NImN18,ho(kR) Cb,H$"(kR). (26) 
p = o  

The definition of the CLm and recurrence relations for the H$"(kR) can be found in [11]. 
In the TSMQNE the summation over the magnetic quantum numbers qi in (7) is restricted 
to -t s qi s z in the same way as discussed above. But additionally thep summation in 
(26) is truncated by the condition 0 s p s t - m. It is exactly this second step which is 
the weak point in the TSMQNE, because this approximation is not valid for small distances 
R.  Using the results of [ l l ]  the summands in (26) may be written as 

(I' + m)!  (I + m + p)! 1 
CkmHFm(kR) = ( - l )m (1' - m)!  (I - m - p)! p!(p + m)! 

From this formal expression (27) it follows that truncating the p sum requires 
l2  4 kR. This is just the same condition under which spherical Hankel functions can be 
approximated by their asymptotic values [19]. But this requirement is not fulfilled for 
close-packed clusters of atoms. From the discussion above it is clear that only I 4 kR is 
realized for nearest neighbours. Therefore a truncation of thep sum in (26) leads to errors 
in the coefficients grIm(R) which increase considerably with the angular momentum I. 
Furthermore this approximation breaks the symmetry (10) of the gICIm(R). In the TSMQNE 
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the t sum, which is closely related to the angular momentum of the scatterer I ' ,  is fully 
included, whereas the p sum, which is connected with the angular momentum at the 
emitter 1, is restricted to low values. Therefore the TSMQNE can be applied preferentially 
for scattering events of spherical waves having low angular momenta with respect to the 
emitter. For reliable multiple-scattering calculations this doubtful approximation should 
be avoided and the fullp sum has to be taken over the whole range from 0 to 1 - m. Then 
the computational effort for a recursive calculation of the Hf"(kR) is proportional to 
l k a x t  = lia,M and the involved recursion scheme of the TSMQNE has no advantages over 
the more direct one for the grIm(R), presented in the preceding section. 

2.4.  Instrumental angular broadening 

The finite angular resolution of the detector in the experimental apparatus can have a 
considerable influence on the measured intensity anisotropies [21,22]. In order to 
include this angular broadening effect in the theory we have to integrate the intensity 
I ( K ,  E ) ,  given by (1)-(3), over a conical range of wavevectorsKaround the detector axis 
KO.  Deformations of the cone due to the refraction of the outgoing waves at the surface 
potential step can be neglected. Then the problem consists in evaluating the following 
mixed quadratic terms in the expression for the intensity (equations (1)-(3)) 

In the following discussion it is assumed that the z axis of the coordinate system points 
to the image of the centre of the detector opening: 

ko = ke, .  (29) 

k = k sin B(cos cp e,  + sin Q, e y )  + k cos 8e, (30) 
R, = R Sin 8R(cos Q)Re, + Sin TRey) (31) 

Using 

Q becomes 

Q = sw d8s in  8s02x d q  Y;,(O, cp)YL(8, cp) 
0 

x e x p [ i k o . ( R ' - R ) c o s 8 + i k l R I ,  -R,Isin 8cos(cp- qO)] (32) 
where a i s  the half-angle of the conical aperture. The essential effects of the finite angular 
resolution are caused by the phase factor in (32), in which the products of wave numbers 
and distances can be much larger than one for many scattering pathways. Neglecting 
terms of higher order in the small parameter 8 one obtains 

(33) 

4 x 1  = (2/X)JI (XI (34) 

Q = e i k o * ( R ' - R ) y *  L,(ko)YL(ko)nn2a(nklR', - R i  I )  
where ncz2 is the aperture area and 

is an aperture attenuation function. This result was previously derived and discussed in 
[21], but it was applied only for mixed terms in the quadratic form of the intensity 
(equations (1)-(3)) in which at least one factor is the direct wave. In these cases one of 
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the vectors R or R' is the emitter position and the aperture attenuation can be described 
by a single factor for each scattering pathway. 

In the general case the attenuation function a(aklR 1 - R ,  I )  depends on two posi- 
tions R and R ' ,  which are the final atoms of two independent scattering pathways. 
Therefore the integrated intensity is a sum over all possible pairs of scattering pathways. 
Such a representation is very cumbersome for numerical calculations. With the help of 
Gegenbauer's addition theorem for Bessel functions [19] 

and the addition theorem for the Gegenbauer polynomials (ultraspherical polynomials) 
~ 3 , 2 4 1  

x (sin ~ R , ) P c ~ - + ~ )  (cos qR,)(sin qR)p~y-:')(cOs q R )  (36) 
the attenuation function a(mklRI, - R ,  1 )  can be factorized. Then the total intensity is 
given by 

with (7) and 

(" $- - ')! 
[ J h  (akR  l) + J i+? (mkR 1)] (A + 1)(A +,U + l)! 

F k p ( R )  = 2py! 

The new summation indices A and y S A can be restricted to low values because the 
Bessel functions with positive order n decrease according toJ,(x) d ( x / 2 ) " / n !  [19]. The 
Gegenbauer polynomials needed in (39) can be calculated from [19] 

(n  + I)c(;~?, (x) = ~ ( n  + m)xCLm)(x) - (n  + 2m - I)Ct:), ( x )  (40) 
with Ch"(x) = 1 and C y ) ( x )  = 2mx. 

3. Angle-resolved MZ3VV AES from Ni(ll1) 

The most delicate input parameters for the theory described above are the transition 
matrix elements, because ab initio calculations within a full many-particle treatment 
were hardly possible until now. However, fortunately, a lot of practical work has been 
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R/Rnn 
Figure 1. (a )  Relative error for the scattering of a scattered wave (defined in [lo]) as a 
function of the truncation parameter M and the distance R (in unitsof the nearest-neighbour 
distance R,,), E = 56.9 eV.  ( b )  Relative error for the first scattering process of the excited 
electrons with the angular momentum I = 3 as in (a) .  

performed for the M23VV Auger transition in nickel. Calculations for nickel atoms 
within a one-electron picture [25] yield the result that the probability of transitions in 
final states with angular momentum lo = 3 is larger by a factor of 100 than that for all 
other transitions. This statement was confirmed in [26]. Therefore we make use of the 
approximation 

&,)(E)  = 4 ) . 3  (41) 

in the expression for the Auger intensity (37). This assumption has already proved its 
worth in previous investigations of angle-resolved Auger spectra from a Ni(001) surface 
[25-291 and a Ni(ll0) surface [30,31]. 

The number of emitter positions and scattering pathways which contribute to the 
intensity is mainly determined by the inelastic mean free path of the electrons, for which 
a value of 4 .72A [32] was used. We have calculated contributions from more than 
5000 single-, double- and triple-scattering pathways starting from all different emitter 
positions in the eight upper layers. An instrumental broadening with (Y = 3" was 
included. The scattering properties of the atoms were described by ten complex scat- 
tering phase shifts, which take into account uncorrelated isotropic thermal vibrations of 
the atoms with a mean square displacement of 0.0043 AZ [33]. 

Figure 1 illustrates that very small values for the truncation parameter M can guaran- 
tee a high accuracy of the multiple-scattering calculations in the energy range of interest. 
The definitions of the error parameters used in figure 1 can be found in [lo]. 

In figures 2, 3 and 4 the calculated Auger electron distributions for the three main 
azimuths are compared with the experimental data from [16]. The measurements were 
performed with the help of a three-grid LEED-AES system, in which an immovable 
collector was placed behind a small hole in the fluorescent screen of the LEED optics, 
while the electron gun was rotated together with the sample. 

The general shape of the theoretical spectra is in good qualitative agreement with 
the measured curves. But this impression is impaired by systematic deviations of the 
calculated peak positions from the experimental ones. Most obviously these angular 
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Figure 2. M2,VV Auger elec- Figure 3. M23VV Auger elec- 
tron intensity (in arbitrary tronjntensity as in figure 2 for 
units) from a clean Ni( l l1)  the [211] azimuth. 
surface as a function of the polar 
angle 0 for the [Oll] azimuth: 
Full multiple-scattering calcu- 
lation (full curve) and exper- 
imental results from [16] 
(broken curve). 

L. 

56 9 e' 

- 
51, 1 e 

0 30 60 
Q (degl  

Figure 4. MZ3VV Auger elec- 
t ronhtensi ty  as in figure 2 for 
the [112] azimuth. 

shifts can be seen in the spectra for the [ O i l ]  azimuth. These differences cannot be 
removed either by increasing the height of the surface potential step within realistic 
limits or by relaxation of the surface layers with changes of the interlayer spacings in the 
order of magnitude proposed by theoretical investigations [34] or LEED measurements 
1321. In this comparison between theory and experiment one should take into con- 
sideration that some uncertainties exist in the experimental data concerning the zero 
point in the angular scale, because the spectra can be shifted by magnetic fields in the 
vacuum chamber. In particular we have no symmetries in the spectra of the [211] azimuth 
and the [if21 azimuth which allow control of the position of the surface normal. 

It must be concluded that the high-quality multiple-scattering calculations have not 
answered all the questions. We have checked carefully that higher-order-scattering 
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contributions are negligible in the example presented and we can be sure that the 
elastic scattering effects of the excited Auger electrons were treated exactly. Remaining 
differences between experiment and theory must be addressed to other origins. The 
weak point in the theory is undoubtedly the approximation for the Auger transition 
matrix elements (41), which assumes an equal weight €or all magnetic quantum numbers 
mo. This is quite reasonable for atoms in an isotropic or close-packed surroundings, but 
it is questionable for atoms at the surface. Therefore the transition matrix elements 
should be studied more carefully starting from a surface band structure calculation which 
takes into account the effects of a lower symmetry at the surface. From an experimental 
point of view the rather large background of secondary electrons, which was subtracted 
from the raw data in order to obtain the intensity of the M23VV Auger electrons [25,29], 
is troublesome. We cannot definitely exclude the possibility that small anisotropies in 
the background of the inelastically scattered electrons have falsified the extracted angle- 
resolved Auger electron spectra. The degree of correspondence between experiment 
and theory achieved for the (111) surface (present paper), the (001) surface [29] and the 
(110) surface [31] makes it difficult to use the diffraction of M23VV Auger electrons in 
nickel for structure investigations of more complicated surfaces, e.g. covered with 
adsorbates. 
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Appendix 

The rotation matrices Dg),m ( a 2 ,  a l  ) transform spherical harmonics from a coordinate 
system with the z axis al into a coordinate system with the z axis a2. If 0, and cp, are the 
angular coordinates of a, in the basis system spanned by the unity vectors e,, er and e, ,  

a, = a,(sin O,(cos cpl  e ,  + sin pl, er) + cos 8 ,  e , )  (AI) 

one obtains 

where a, p and y are the Eulerian angles, which can be calculated from 

cos ,6 = sin O 2  sin O 1  c0s(q2 - cp + cos O 2  cos O 1  

sin a sin /3 = sin 8: sin(cp2 - cp 

cos a s i n  /3 = sin O 2  cos O 1  cos(q2 - c p l )  - cos O 2  sin O 1  

s inys inp  = -sin O1 sin(cp, - q 1 )  

cos y s i n p  = -cos O 2  sin O 1  c0s(p12 - c p l )  + sin O 2  COS e l .  
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The d;)," (p)  are determined by 

x (sin(~/2))"-" ~~~jn,~~~'+~) (cos 0) 3 ('44) 

where Pj".") (x)  are the Jacobi polynomials [19]. The dg,,(p) obey the symmetry 
relations 

d;),., ( p )  = d", - m ,  (0) 
dg;,,,(p) = (- l)""'n;),,, (/3) 

(A51 

('46) 

and can be calculated for m' 2 0 and /mi S m' by means of the following recurrence 
relations: 

b I +  1 b I +  1, c d::;) ( B) = (21 + 1 )[(I + 1 ) COS p - mm ' /I] d (/3) 
- [(I + 1) /~ Ib I ,~b , ,m ,d ;~~~ ' (P )  (A71 

b,." = V F G P  ('48) 

with 

and the initial values 
(2m')! 112 

dl,mZ(P) = 2-" (( (1 +cos p)"+"(l -cos /3)" - "'1 
m' + m)! (m' - m)! 

and 

[("+ l)cosp-m]d$j),(P). 
2m' + 1 

m' + m  + l ) (m'  - m +  1) 
d$>*)(p) = (, 
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